Tricking the Nazis and Transforming Medicine: George de Hevesy

Since ancient times, scientists have tried to peak inside the living body. Chemist Gyorgy Hevesy’s work in this area transformed medicine. He also happened to foil the Nazis along the way. [Legends of Chemistry intro] In 1911, chemist György Hevesy faced an impossible task. His lab director in England had asked him to separate out the radioactive atoms from the nonradioactive atoms inside a block of lead, so they could study the radioactive atoms more easily. But no one back then understood that separations like that are impossible through strictly chemical means. So Hevesy wasted two years on the project before finally giving up. To make things worse, Hevesy—a bald, mustachioed Hungarian—was homesick and hated the cooking at his boarding house. He grew suspicious that his landlady’s “fresh” daily meat wasn’t so fresh, like a high school cafeteria recycling Monday’s hamburgers into Tuesday’s beef chili. She denied this, so Hevesy hatched a plan—a plan based on an unexpected breakthrough in his research. He still couldn’t isolate the radioactive lead atoms, but he realized that maybe he could flip that to his advantage. He imagined injecting some dissolved lead into a living creature. The creature would metabolize both the normal lead and the radioactive lead—but the radioactive lead would send out beacons of radioactivity as it moved through the body. If this worked, Hevesy could see inside veins and organs with an unprecedented degree of resolution. Before he tried these radioactive tracers on a living being, though, Hevesy tested his idea on the tissue of a nonliving being—his dinner. He took an extra helping of meat one night and, when the landlady’s back was turned, sprinkled radioactive lead powder on it. She gathered his leftovers, and the next day Hevesy brought home a newfangled radiation detector. Sure enough, when he waved the Geiger counter over that night’s meal, it went crazy: click- click-click-click. He’d caught her recycling dinner red-handed. This was a dangerous stunt, but it proved that the radioactive tracers worked! And over the next two decades, Hevesy developed the idea further, allowing doctors to see inside living hearts and brains for the first time. The work proved so important that chemists kept nominating Hevesy for the Nobel Prize, but he kept losing out. Hevesy did have a strange run-in with the Nobel Prize, however. In August 1940 Nazi storm troopers invaded Copenhagen, Denmark and knocked on the front door of the institute where Hevesy was working. This was bad. A few years earlier, two German scientists who hated the Nazis had sent their gold Nobel medals to Denmark for safekeeping. Adolf Hitler had made exporting gold a state crime, and if the Nazi soldiers found German Nobel medals in Copenhagen, it could lead to multiple executions. So as Hevesy recalled, “while the invading forces marched in the streets… I was busy dissolving the medals” in liquid. He used aqua regia—a caustic mix of nitric and hydrochloric acids that can dissolve gold. The Nazis ransacked the institute for loot, but left the beaker of aqua regia untouched. Hevesy had to flee to Stockholm in 1943, but when he returned to his battered laboratory in 1945, he found the beaker undisturbed on a shelf. He reconstituted the gold, and the Nobel academy recast the medals for the scientists. Hevesy’s only complaint about the ordeal was the day of lab work he missed while fleeing Copenhagen. In recent decades, several chemists have built on Hevesy’s vision and developed other tools for peering inside our organs. Like green fluorescent protein. GFP appears naturally in some sea creatures, and it causes them to glow an eerie green when exposed to blue or ultraviolet light. In the 1960s a Japanese organic chemist named Osamu Shimomura isolated GFP from the crystal jellyfish and analyzed it. GFP remained just a curiosity, though, until 1988, when American biochemist Martin Chalfie had a flash of genius. Chalfie worked with tiny worms, and he wanted to determine which worm cells made certain proteins. GFP was the answer. Chalfie isolated the DNA in jellyfish that makes GFP. He then inserted that DNA into the worm DNA that created the protein of interest. As a result, whenever the worm made that protein, it made GFP, too. Chalfie could then see which cells did and didn’t make the target protein by shining light on the worm and seeing which cells glowed green. The same technique worked in mice and other mammals, too. Later, the American chemist Roger Tsien expanded the palate of GFP. By swapping in different DNA and changing GFP’s structure, he could make the molecule glow blue or yellow instead; other scientists added red. As a result, they could now study a rainbow of several target proteins at once. Overall, fluorescent proteins allowed scientists to not only see inside organs like the brain, but to study different biochemical activity in different regions. Tsien, Chalfie, and Shimomura won the Nobel Prize in chemistry in 2008. Oh, and speaking of Nobel Prizes, I’m happy to say that György Hevesy, after heroically dissolving the gold medals, did pick up a Nobel Prize of his own, for radioactive tracers. And to think, it all started with a bad meal and a prank on his landlady… Thanks for watching Chemheads! If you want more episodes on Sam Kean, check out Megaladon or check out Legends of Chemistry Volume 1, all about the accidental discoveries that made history. And don’t forget to subscribe. See you soon.


  1. Note: When the gold is dissolved in Aqua Regia it becomes Chloroauric Acid. Adding sodium metabisulfite will precipitate out the gold.

  2. Fascinating.  But what is wrong with using leftover meat the next day in chili?  Wendy's does it all the time.  🙂

  3. Great video, I'd love it if you made more videos, like this, discussing the works of other scientists as well.

  4. GFP was a major scientific breakthrough and the scientists responsible rightly were awarded the Nobel Prize.  Thanks for a great story and video.

  5. Another personal angle:  He was born in Budapest, Hungary to a wealthy and ennobled Roman Catholic family of recent Hungarian Jewish descent.  In 1943 Copenhagen was no longer seen as safe for a Jewish scientist and de Hevesy fled to Sweden, where he worked at the Stockholm College until 1961.

Leave a Reply

(*) Required, Your email will not be published